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Abstract

Dynamic memory management in C++ is one of the most commasarkdifficulty and
errors for amateur and expert C++ developers alike. Theapgruse of operatarew and op-
eratordelete is arguably the most common cause of incorrect program behamd segmen-
tation faults in C++ programs. Here we introduce a templatucrete C++ clas$euchos-
:RCP , which is part of the Trilinos tools packageuchos , that combines the concepts of
smart pointers and reference counting to build a low-ovadHmut effective tool for simplifying
dynamic memory management in C++. We discuss why the usewopadinters for mem-
ory management, managed through explicit calls to operetorand operatodelete , is so
difficult to accomplish without making mistakes and how peogs that use raw pointers for
memory management can easily be modified toR@&® In addition, explicit calls to operator
delete is fragile and results in memory leaks in the presents of Cxceptions. In its most
basic usageRCPautomatically determines when operatielete should be called to free an
object allocated with operatmew and is not fragile in the presents of exceptions. The class
also supports more sophisticated use cases as well. Thisraot describes just the most basic
usage oRCPto allow developers to get started using it right away. Hosvemore detailed in-
formation on the design and advanced featurg®Q#is provided by the companion document
“Teuchos::RCP : The Trilinos Smart Reference-Countedteoi@lass for (Almost) Automatic
Dynamic Memory Management in C++".

*Sandia is a multiprogram laboratory operated by Sandia @atn, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94A085
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1 Introduction

The main purpose of this document is to provide a quick-giaitle on how to incorporate the
reference-counting smart pointer cldgsichos::RCP into C++ programs that use dynamic memory
allocation and object orientation. This code is includethia Trilinos [3] tools packag&euchos .
The design offeuchos::RCP is based partly on the interface fsid::auto  _ptr<> and Items 28
and 29 in "More Effective C++"/[5]. In shortRCPallows one client to dynamically create an
object (using operatarew for instance), pass the object around to other clients tbatino access
the object and never require any client to explicitly calemordelete . The object will (almost
magically) be deleted when all of the clients remove theienences to the object. In principle,
this is very similar to the type of garbage collection thainisanguages like Perl and Java. There
are some pathological cases (such as the classic probleircofac references, see [5, Item 29,
page 212]) wher&®CPwill result in a memory leak, but these situations can be dewithrough
the careful use oRCP However, realizing the potential of hands-off garbagdemtion with RCP
requires following some rules. These rules are partialgllsd out in the form of commandments
in Appendix C.

Note that direct calls to operataelete are discouraged in modern C++ programs that are
designed to be robust in the presence of C++ exception hgndihis is because the raw use of
operatordelete  often results in memory leaks when exceptions are throwm.ekample, in the
code fragment:

void someFunction()

{
A *a = new A;
a->f();
delete a;

}

if an exception is thrown in the function cat>f() then the statemermelete a will never be
executed and a memory leak will have been created. Thestthssto _ptr<> was added to the
standard C++ library (see[5, Items 9 and 10]) to protectrjahese types of memory leaks. For
example, the rewritten function:

void someFunction()

{

std::auto_ptr<A> a(new A);
a->f();
}

is robust in the event of exceptions and no memory leak wituoc Howevergstd::auto  _ptr<>

can not be used to share a resource between two or more diedtherefore is not an answer to
the issue of general garbage collection. The cR&2not only is robust in the event of exceptions
but also implements reference counting and is thereforeemeneral (but admittedly more complex
and expensive) thasid::auto  _ptr<> .

The use ofRCPis critically important in the development and maintenanédarge complex
object-oriented programs composed of many separatelglolged pieces (such as Trilinos). This
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discussion assumes that the reader has a basic familiadtg@nme programming experience with
C++ and has at least been exposed to the basic concepts of-obgnted programming (good
sources include [2] and [6]). Furthermore, the reader shbel comfortable with the use of C++
pointers and references.

The appendices contain basic reference materiaR@H In many respects, the appendices are
the most important contribution of this document. For thessders that like to see the C++ decla-
rations right away, Appendix A contains the C++ declaraifor the template clas®CPand some
important associated non-member templated functions.eApp B is a short reference-card-like
quick-start for the use oRCP The quick-start in this appendix shows how to creR@ objects
from raw C++ pointers, how to represent different forms omstantness, cast from one pointer
type to another, access the underlying reference-couripttoas well as to associate and manage
extra data. Appendix C gives some commandments for the uRERdNd reinforces the material
in Appendix B. Appendix D gives tables of recommended ididarshow to pass raw C++ objects
andRCRwrapped objects to and from functions. Appendix E givestny for an example program
that uses raw pointer variables and direct calls to oper&twand operatodelete  while Appendix
F shows a refactoring of this example program to RE€

Note! Anxious readers are encouraged to jump directly to Appedand F to get an idea of
whatRCPis all about. This example, together with the reference rati® the appendices, should
be enough for semi-experienced C++ developers to starty R&Rright away.

For less anxious readers, in the following section, we diesavhy the use of raw C++ pointers
and raw calls to operatarew and especially operatalelete is difficult to program correctly in
even moderately complex C++ programs. We then discuss fferatdit ways C++ pointers are
used in such programs and describe how to refactor thesegmnsgto replace some of the raw
C++ pointers and raw calls to operatimlete  with RCR In the following discussion we will define
persistingandnon-persistingassociations and will make a distinction between them (age fi1).
RCPis recommended for use only wiglersistingassociations. The consistent us&6Pextends the
vocabulary of C++ in helping to distinguish between these types of relationships. In addition,
RCPis designed for the memory management of individual objewisraw C++ arrays of objects.
Array allocation and deallocation should be performed gisitandard C++ containers suchsts
wvector<> | std::valarray<> or some other such convenient C++ array class but the begiecho
is typically a debug range-checked class lileichos::Array . However, it is quite common to
dynamically allocate arrays &fCPobjects and usBCPto manage the lifetime of such array class
objects.



2 An example C++ program

The use of object-oriented (OO) programing in C++ is the majotivation for the development

of RCP. OO programs are characterized by the use of abstract sléisseinterfaces) and concrete
subclasses (i.e. implementations). In OO programs it ismomthat the selection of which concrete
subclass(es) to use is not known until runtime. The “AbstFactory” [2] is a popular design pattern
that allows the flexible runtime selection of what concretbctasses to create.

Below we describe a fictitious program that demonstratesesuithe typical features of an OO
program that uses dynamic memory management in C++. Inithjge program, handling memory
management using raw C++ pointers and calls to operswrand operatodelete  will appear
fairly easy but larger more realistic OO programs are muchencomplicated and it is definitely not
easy to do memory management without some help.

2.1 Example C++ program using raw dynamic memory management

One of the predominate features of this example prograneisise of the following abstract inter-
face base claddtilityBase that defines an interface to provide some useful capability.

class UtilityBase {
public:
virtual void f() const = 0;

In our example progranytilityBase will have two subclasses where one or the other will be
used at runtime.

class UtilityA : public UtilityBase {

public:

void f() const { std::cout<<"\nUtilityA::f() called, this ="<<this<<"\n"; }
3
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this ="<<this<<"\n"; }
3

In this example program the above implementation functjassprint to standard out.

Some of the clients in this program have to creatiétyBase objects without knowing ex-
actly what concrete subclasses are being used. This is atisbed through the use of the “Abstract
Factory” design pattern [2]. FaditilityBase , the abstract factory looks like

class UtilityBaseFactory {
public:
virtual UtilityBase* createUtility() const = 0;

3



and has the following factory subclasses for creatitigyA  andUtilityB ~ objects.

class UtilityAFactory : public UtilityBaseFactory {

public:

UtilityBase* createUtility() const { return new UtilityA( ); }
3
class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB( ); }
Y

Now let's assume that our example program has the followiiegicclasses.

Il Simple client with no state
class ClientA {
public:
void f( const UtilityBase &utility ) const { utility.f(); }
Y

Il Client that maintains a pointer to a Utility object
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility (0) {}

“ClientB() { delete utility ; }

void initialize( UtilityBase *utility ) { utility_ = utilit y; }
void g( const ClientA &a ) { a.f(*utility ); }

3

II' Client that maintains pointers to UtilityFactory and Ut lity objects

class ClientC {
const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;
public:
ClientC( const UtilityBaseFactory *utilityFactory, bool shareUtility )
:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,ShareUtility_(shareUtility) {}
“ClientC() { delete utilityFactory ; delete utility ; }
void h( ClientB *b ) {
if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility()) ;
}
Y

The type of logic used i€lientC  for determining when new objects should be created or when
objects should be reused and passed around is common intaoge complicated OO programs.

The above client classes demonstrate two different typessidciations between object®n-
persistingandpersisting
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Non-Persisting associatiorexist only within a single function call and do not extenceathe
function has finished executing. For example, objects of @ientA and UtilityBase have
a non-persisting relationship through the functi@ientA::f(const UtilityBase &utility)
Likewise, objects of typ€lientB  andClientA have a non-persisting association through the func-
tion ClientB::g( const ClientA &a )

Persisting associationare where a relationship between two objects exists pasigiesiunc-
tion call. The most typical kind of persisting associatioran OO C++ program is where one object
maintains a private pointer data member to another objeot. ekample, persisting associations
exist between &lientC  object, aUtilityBaseFactory and aUtilityBase object through the
the private C++ pointer data membeientC:utilityFactory _ andClientC::utility _re-
spectively. Likewise, a persisting association existsveen aClientB  object and aJtilityBase
object through the private pointer data mem®©kentB::utility .

Persisting relationships are significantly more compleanthon-persisting relationships since
a persisting relationship usually implies that some olsjestist be responsible for the lifetime of
other objects. This is never the case in a non-persistiragioakship as defined above.

Appendix E shows an example program that uses all of the Cassek described above. The
program in Appendix E has several memory management prablém astute reader will notice
that theUtilityBaseFactory created inmain() gets deleted twice; once in the destructor for
theClientC objectc and again at the end afain() in an explicit call to operatodelete . This
problem could be fixed in this program by arbitrating “owreps of the UtilityBaseFactory
object to eithemain() or theClientC object, but not both which is the case in Appendix E.

A more difficult memory management problem to catch and fixueedn theClientB  and
ClientC objects regrading a sharedilityBase object. WhenshareUtility is set tofalse
(by the user in the commandline arguments) the objett$2 andc each own a pointer to differ-
ent UtilityBase objects and the software will correctly delete each dynaityiallocated object
using one and only one call to operattglete (in the destructors of these classes). However,
when shareUtility is to set totrue the objecthl, b2 andc will contain pointers to the same
UtilityBase object and operatatelete  will be called on this sharedtilityBase object multi-
ple times wherbl, b2 andc are destroyed. In this case, it is not so easy to arbitrateemshaip of
the sharedUtilityBase object to theClientB  or theClientC  objects. Logic could be developed
in this simple program to insure that ownership was assigmegderly but such logic would enlarge
the program, complicate maintenance, and would ultimatedke the software components less
reusable. In more complex programs, trying to dynamicatbjteate ownership at run time is much
more difficult and error prone if done manually.

2.2 Refactored example C++ program usingeuchos: : RCP

Now we describe hoRCPcan be used to greatly simplify dynamic memory managemettitase
types of OO programs. Appendix F shows the refactoring optiegram in Appendix E to useCP
for all persisting relationships. In general, refactorsmftware that uses raw C++ pointers to use
RCPis as simple as replacing the tyjpt with RCP<T> whereT is nearly any class or built-in data

type.

The first persisting relationship for whidRCPis used is the relationship betweetiity-
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BaseFactory object and a client that uses it. The refactoring changesetioen type ofUtility-
BaseFactory::createUtility() from a raw UtilityBase* pointer to aRCP<UtilityBase>
object. The new "Abstract Factory” class declarationsyasag that the symbols from thieuchos
namespace are in scope so that explieitchos::  qualification is not necessary) become

class UtilityBaseFactory {

public:
virtual RCP<UtilityBase> createUtility() const = 0;
Y
class UtilityAFactory : public UtilityBaseFactory {
public:
RCP<UtilityBase> createUtility() const { return rcp(new U tilityA()); }
Y
class UtilityBFactory : public UtilityBaseFactory {
public:
RCP<UtilityBase> createUtility() const { return rcp(new U tilityB()); }
Y

In addition to the change of the return type, the refactoatsp requires that calls to operator
new be wrapped in calls to the templated functiteuchos::rcp(...)

The refactoring shown in Appendix F does not impact the difimiof the clas<lientA  since
this class does not have any persisting relationships wigrotgher objects. However, the definitions
of the classe€lientB andClientC do change and become

class ClientB {
RCP<UtilityBase> utility_;

public:
void initialize(const RCP<UtilityBase> &utility) { utili ty_=utility; }
void g( const ClientA &a ) { a.f(*utility ); }

Y

class ClientC {

RCP<UtilityBaseFactory> utilityFactory_;

RCP<UtilityBase> utility_;

bool shareUtility_;

public:

ClientC( const RCP<UtilityBaseFactory> &utilityFactory , bool shareUtility )
:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,ShareUtility_(shareUtility) {}

void h( const Ptr<ClientB> &b ) {
if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory ->createUtility())

}

13

The first thing that one should notice about the refact@i@mtB andClientC classes is that
their destructors are gone. It turns out that the compiteregated destructors do exactly the correct
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thing (i.e. call the destructor on tlRCPdata members which in turns calls operatelete on the
underlying reference-counted object when the referencatagoes to zero). The second thing that
one should notice is that the old default constru€li@ntB:;ClientB() which initialized the raw
C++ pointerutility  _to null is no longer needed sin& Phas a default constructor that does that.
A third thing to notice about these refactored client clasisethat theRCPobjects are passed by
const reference (see Appendix D) and not by value as the correspgpmaw pointers where in the
original unfactored classes. PassRi@Pobjects byconst reference yields slightly more efficient
code and simplifies stepping through the code in a debuggeexample, a function declared as

void someFunction( RCP<A> a );

will always result in the copy constructor f®CP being called (and therefore stepped into in a
debugger) while this same function declared as:

void someFunction( const RCP<A> &a );

will often not require the copy constructor be called (exdegases where an implicit conversion
is being performed as described in Appendix B) and therebingalebugging.

Lastly, above, the clag¥r is a Teuchos non-reference-counted smart pointer claggngesto
avoid raw pointers. It is used for non-persisting assamietiwhere a raw pointer would otherwise
be used. Ptr initializes to NULL and in debug mode it will throw excepti@xceptions when
dereferencing NULLPtr plays a small role in the overall strategy to avoid all raw (abinters at
the application programming level.

As an aside, note that Appendix D gives recommended idiomisdie to pass raw C++ objects
andRCRwrapped objects to and from functions in a way that resultiirction prototypes becoming
as self documenting as possible, help to avoid coding eandsincrease the readability of C++
code. Also, in addition to the benefit tlR€Peases dynamic memory management, the selective
use ofRCPand raw C++ object references extends the vocabulary of #el@hguage by helping
to distinguish between persisting and non-persisting@asons. For example, when a one sees a
function prototype where an object is passed througlCRsuch as

class SomeClass {
public:
void someFunction( const RCP<A> &a );

}

one can automatically deduce that “memory” of hebject will be retained (through a private
RCP<A>data member iSomeClass no doubt) and that should automatically alter how the dgeslo
plans on calling that function and passing thebject. The refactored C++ program in Appendix F
provides an example of how the idioms presented in Appendixelput to use.
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3 Additional and advanced features ofRCP

The use cases fatCPdescribed above comprise a large majority of the relaveatcases in most
programs, but there there are some other use cases thatereglditional and more advanced fea-
tures. Some of these additional features (the C++ deabasfor which are shown in Appendix A)
are mentioned below:

. Casting

RCPobjects can be casted in a manner similar to casting raw C+itgre and the same
types of conversion rules apply. Analogs of the built-intsatic _cast<> , const _cast<>
anddynamic _cast<> are supported by the non-member templated functiomsstatic _-
cast<> , rcp _const _cast<> andrcp _dynamic _cast<> respectively. See Appendix B for
examples of how they are used.

. Reference-count information

The functionRCP::.count()  returns the number dRCPobjects that point to the underlying
reference-counted object. This information can be usefgbime cases.

. Customized deallocation policies

The default behavior dRCPis to call operatodelete on reference-counted objects once the
reference count goes to zero. While this is the most commoegded behavior, there are
use cases where more specialized dellocation polices qured. For these cases, there is
an overloaded form of the templated functideuchos::rcp(...) that takes a templated
deallocation policy object that defines how a referencextaml object is deallocated when
required.

. Associating extra data with a reference-counted object

There are some more difficult use cases where certain typegonmation or other objects
must be bundled with a reference-counted object and mudiendeleted until the reference-
counted object is deleted. The non-member templated fumsset extra _data<>(...)

andget _extra _data<>(...) serve this purpose (see item (6) in Appendix B). Note that
the extra data mechanism relies onsth:map and string comparisons etc. and can impart
some unacceptably high overhead in some use cases.

. Embeddeding an object on creation of an RCP object

Similar to the use of extra data, the RCP class also suppwtedncept of an embedded
object. The functionscpWithEmbeddedObj[PreDestroy,PostDestroy](...) (se€ 7 in
Appendix B) can be used create BBPobject and embedd any other value-type object in
the createdRCPNode This uses a customized deallocator class and imparts \eshead
than the extra data feature at the cost of being less flexil@eyou can can only embedd
a single value object and it must be done right when the R&Robject is created). The
advantage of this approach is that access of the embeddect akjng theyet[Nonconst]-
EmbeddedObj(...) is faster than when using extra data but requires that yovigganore
information.

. Checking for memory leaks from circular references
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In a debug build, the user can enable checking for memonrgleaksed by circular references
among RCP objects. If cicular references do exist, fREéANodeobjects that where created
but not removed are displaed at the end of a program. See ¢h&efithos _RCP.cpp for
details.

. Addressing circular references with weak RCP objects

The default mode foRCPis as a “strong” pointer. That means that the underlyingrezfee-
counted object is only deleted after all of the “strorRCRs to the object are removed. Of
course when you have a circular reference using “strd®@ps, then that will never happen
and a memory leak will be created for all of the objects ineadlin the cycle.

To help address this problem, &EPobject can be tagged as a “weak” pointer. When all of
the “strong”RCPobjects goes away, the underlying reference-counted bisjelestroyed but
the RCPNodeobject is not if there are any lingering (i.e. dangling) “we&CPaobjects. In a
debug build of the code, all of the dangling “wedkCPobjects will thrown exceptions when
clients try to dereference the object through the “weak’hpai This functionality provides
the foundation for a number of very advanced features. Tapability imparts very little
O(1) extra overhead.

The ability to tagRCPobjects as “weak” can be used to help address circular deperes
in general, clean, and safe way. In a debug build of the cddanyi mistakes are made
then exceptions will be thrown with an excellent error mggssato help debug the problem.
Without full blown garbage collection, this is about the tbst we can do in C++.
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4 Debugging C++ code

One issue that commonly comes up for beginning C++ programimdow to debug programs that
useRCPwhen they are just used to using raw C++ pointers. | am notggtmrcover the basics on
how to use debuggers like GDB to debug C++ programs but | wié @ few tips that should help
beginning C++ programings get started.

This first problem that begining C++ programmers have is yingy to access the underlying
raw C++ pointer in the debugger. For example, consider thetfon:

void someFunc( const RCP<const A> &a )

{
a->f();

}

When debugging the above function in a debugger such as G chn you access the un-
derlying raw object of typd\ inside of theRCP<A>objecta? Well, in GDB for instance, if you put
a breakpoint on the line->f() , you can print the address of the underlying object of tjdey

typing:
print a.ptr_
You can print the whole object with:
print *a.ptr_

and so on. In general, if you had code with a raw pointer nasom@Ptr that was converted over to
useRCP, you simply access the underlying raw C++ pointer usiogePtr.ptr  _ in the debugger.
That is all there is to it. See the internal private reprsioaof RCPshown in Appendix A for more
details.

One other note on debugging programs that R€Ethat is worth mentioning is how to step
through functions that takeCPas formal arguments. Consider the simple functameFunc(const
RCP<const A>&) shown above. When this function is called by the followingdtion:

void someFunc2( const RCP<const A> &a )

{

someFunc(a);

}

you can step from the cadbmeFunc(a) directly intosomeFunc(...)  because the formal argument
a of typeconst RCP<const A>& is a direct match.

However, if any implicit (or explicit) conversion dRCP objects is required to complete the
function call, you will end up stepping into the copy constar for RCPfor each argument requiring
a conversion. For example, the following functions reqttie copy constructor fdRCPto be called
in order to call and therefore step into the functammeFunc(...)

16



void someFunc3( const RCP<A> &a )

{

someFunc(a); // Convert from RCP<A> to RCP<const A>

}

void someFunc4( const RCP<const B> &b )

{

someFunc(b); // Convert from RCP<const B> to RCP<const A>

}

To avoid having to step into the copy constructorR@Pin these cases, you can just directly set
a breakpoint in the functiosomeFunc(...) . In GDB you can do this by setting the breakpoint by

typing:
break 'someFunc(

followed by typing[Tab] (which will expand the full function prototype) and then ity [Enter]
With this breakpoint set, you can just tygentinue in GDB and you will enter the function
someFunc(..)  without having to step through the copy constructorsR0OP

Debugging strategies in other debuggers is similar but youlsl get the idea.
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5 Summary

The templated C++ clag¥CPprovides a low-overhead option for (almost) automatic mgmmean-
agement in C++. This class has been developed and refinedvamy years and has been in-
strumental in improving the quality of software projectattluse it consistently (for example see
MOOCHO [1]). Careful use oRCPeliminates the need to manually call operaielete when
dynamically allocated objects are no longer needed. Fumthee, it helps to reduce the amount of
code that developers have to write. For example, most ddkaeéusd&RCPfor dynamically allocated
memory do not need developer-supplied destructors. Thiause the compiler-generated destruc-
tors do the exactly correct thing which is to call destruston an object’s constituent data members.
This was demonstrated in the difference between the otiginé refactored classedientB and
ClientC described in Sections 2.1 and 2.2.

The classRCPalso has advanced features not found in many other smartgpomplementa-
tions such as the ability to attach extra data, the custdioizaf the deallocation policy, cicular
reference identification and debugging, and “weak” pogterhelp resolve circular references.
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A C++ declarations for RCP

namespace Teuchos {
enum ENull { null };
enum EPrePostDestruction { PRE_DESTROY, POST_DESTROY },

template<class T>
class RCP {
public:
typedef T element_type;
RCP( ENull null_arg = null );
explicit RCP( T* p, bool has_ownership = false );
template<class Dealloc_T>
RCP( T* p, Dealloc_T dealloc, bool has_ownership );
RCP(const RCP<T>& r_ptr);
template<class T2> RCP(const RCP<T2>& r_ptr);
"RCP();
RCP<T>& operator=(const RCP<T>& r_ptr);
bool is_null() const;
T* operator->() const;
T& operator*() const;
T* get() const;
T* getRawPtr() const;
Ptr<T> ptr() const;
ERCPStrength strength() const;
bool is_valid_ptr() const;
int strong_count() const;
int weak_count() const;
int total_count() const;
void set_has_ownership();
bool has_ownership() const;
Ptr<T> release();
RCP<T> create_weak() const;
RCP<T> create_strong() const;
template<class T2>
bool shares_resource(const RCP<T2>& r_ptr) const;
const RCP<T>& assert_not_null() const;
const RCP<T>& assert_valid_ptr() const;
private:
T *ptr_;
RCPNode node_;

%
template<class T> RCP<T> rcp( T* p, bool owns_mem = true );

template<class T, class Dealloc_T> RCP<T> rcp( T* p, Deallo c_T dealloc,
bool owns_mem );

template<class T> Teuchos::RCP<T> rcpFromRef( T& r );

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObjPreDestroy( T* p, const Embedde d &embedded,
bool owns_mem = true );

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObjPostDestroy( T* p, const Embedd ed &embedded,
bool owns_mem = true );

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObj( T* p, const Embedded &embedded ,
bool owns_mem = true );

template<class T> bool is_null( const RCP<T> &p );
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template<class T> bool operator==( const RCP<T> &p, ENull )
template<class T> bool operator!=( const RCP<T> &p, ENull )

template<class T1, class T2> hool operator==( const RCP<T1
const RCP<T2> &p2 );

template<class T1, class T2> bool operator!=( const RCP<T1
const RCP<T2> &p2 );

template<class T2, class T1> RCP<T2> rcp_implicit_cast(c
template<class T2, class T1> RCP<T2> rcp_static_cast(con
template<class T2, class T1> RCP<T2> rcp_const_cast(cons

template<class T2, class T1>
RCP<T2> rcp_dynamic_cast(const RCP<T1>& p1, bool throw_o

template<class T1, class T2>

void set_extra_data(const T1 &extra_data, const std::str
const Ptr<RCP<T2> > &p, EPrePostDestruction destroy_when
bool force_unique = true );

template<class T1, class T2>
const T1& get_extra_data( const RCP<T2>& p, const std::str

template<class T1, class T2>
T1& get_nonconst_extra_data( RCP<T2>& p, const std::stri

template<class T1, class T2>
Ptr<const T1> get_optional_extra_data( const RCP<T2>& p,

template<class T1, class T2>
Ptr<T1> get_optional_nonconst_extra_data( RCP<T2>& p, ¢

template<class Dealloc_T, class T>
const Dealloc_T& get_dealloc( const RCP<T>& p );

template<class Dealloc_T, class T>
Dealloc_T& get_nonconst_dealloc( const RCP<T>& p );

template<class Dealloc_T, class T>
Ptr<const Dealloc_T> get_optional_dealloc( const RCP<T>

template<class Dealloc_T, class T>
Ptr<Dealloc_T> get_optional_nonconst_dealloc( const RC

template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj( const RCP<T>& p );

template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj( const RCP<T>& p );

template<class TOrig, class Embedded, class T>
Ptr<const Embedded> getOptionalEmbeddedObj( const RCP<T

template<class TOrig, class Embedded, class T>
Ptr<Embedded> getOptionalNonconstEmbeddedObj( const RC

template<class T>
std::ostream& operator<<( std::ostream& out, const RCP<T

} /I namespace Teuchos

> &pl,

> &pl,

onst RCP<T1>& pl);
st RCP<T1>& pl);

t RCP<T1>& pl);

n_fail = false);

ing& name,
= POST_DESTROY,

ing& name );

ng& name );

const std::string& name

onst std::string& name );

&p)

P<T>& p );

>& p);

P<T>& p );
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B RCP quick-start and reference

This appendix presents a short, but fairly comprehensiuekestart for the use oRCP. The use
cases described here should cover the overwhelming magdithe use instances 8CPin a typical
program.

The following class hierarchy will be used in the C++ exarsgi@en below.

class A { public: virtual "A(){} A& operator=(const A&){} vi rtual void fO{} };
class Bl : virtual public A {};

class B2 : virtual public A {};

class C : virtual public B1, virtual public B2 {};

class D {};
class E : public D {};

All of the following code examples used in this appendix assumed to be in the names-
paceTeuchos or have appropriatasing Teuchos:.... declarations. This removes the need to
explicitly useTeuchos::  to qualify classes, functions and other declarations framTeuchos
namespace. Note that some of the runtime checks are derotdelaug runtime checked” which
means that checking will only be performed in a debug buhat(is one where the macrBEBUG
is defined at compile time).

1. Creation of RCP objects

(a) Initializing a RCP object to NULL
RCP<C> c_ptr,
or
RCP<C> c_ptr = null;
(b) Creating a RCP object usingnew
RCP<C> c_ptr = rcp(new C);
or
RCP<C> c_ptr(new C);
NOTE: Prefer to define and use non-member constructor fumetihat yeild:
RCP<C> c_ptr = newC();

(c) Creating a RCP object to an array allocated usingnew n]
See the claseuchos::ArrayRCP  and the functiorarcp<T>(int n)

(d) Initializing a RCP object to an object notallocated with new

C c
RCP<C> c_ptr = rcpFromRef(c);

(e) Copy constructor (implicit casting)
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RCP<C> c_ptr = rcp(new C); // No cast
RCP<A> aptr = c_ptr; Il Cast to base class
RCP<const A> ca ptr = a_ptr; Il Cast from non-const to const

(f) Representing constantness and non-constantness

i. Non-constant pointer to non-constant object
RCP<C> c_ptr;

ii. Constant pointer to non-constant object
const RCP<C> c_ptr;

iii. Non-Constant pointer to constant object
RCP<const C> c_ptr;

iv. Constant pointer to constant object
const RCP<const C> c_ptr;

2. Reinitialization of RCP objects (using assignment operator)

(a) Resetting from a raw pointer

RCP<A> a_ptr,
a ptr = rcp(new A();

(b) Resetting to null

RCP<A> a_ptr = rcp(new A());
a ptr = null; // The A object will be deleted here

(c) Assigning from a RCP object

RCP<A> a_ptrl;
RCP<A> a ptr2 = rcp(new A();
a ptrl = a ptr2; // Now a ptrl and a_ptr2 point to same A objec t

3. Accessing the reference-counted object

(a) Access to object reference (debug runtime checked)
C &c_ref = *c_ptr;
(b) Access to object pointer (unchecked, may returiNULL, NOT RECOMMENDED)
C *c_rptr = c¢_ptr.get();
WARNING: Avoid exposing raw C++ pointers in your program!

(c) Access to object pointer (debug runtime checked, will not reirn NULL, NOT REC-
OMMENDED)

C *c_rptr = &*c_ptr;
WARNING: Avoid exposing raw C++ pointers in your program!
(d) Access of object’'s member (debug runtime checked)
c_ptr->f();
(e) Testing for non-null
if (lis_null(a_ptr)) std::cout << "a_ptr is not null\n";
or

if (@_ptr != null) std:cout << "a ptr is not null'\n";
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(f) Testing for null
if (is_null(a_ptr)) std::cout << "a_ptr is null'\n";
or

if (a_ptr == null) std::cout << "a_ptr is null\n";

4. Casting

(a) Implicit casting (see copy constructor above)

i. Using copy constructor (see above)

ii. Using conversion function

RCP<C> c_ptr = rcp(new C); Il No cast
RCP<A> a ptr = rcp_implicit_cast<A>(c_ptr); /I To base
RCP<const A> ca ptr = rcp_implicit_cast<const A>(a_ptr); /I To const

(b) Casting awayconst

RCP<const A> ca_ptr = rcp(new C);
RCP<A> a_ptr = rcp_const_cast<A>(ca_ptr); // cast away con st!

(c) Static cast (no runtime check)

RCP<D> d_ptr = rcp(new E);
RCP<E> e ptr = rcp_static_cast<E>(d_ptr); // Unchecked, u nsafe?

(d) Dynamic cast (runtime checked, failed cast allowed)

RCP<A> a ptr = rcp(new C);

RCP<B1> bl ptr = rcp_dynamic_cast<B1>(a_ptr); // Checked , safel
RCP<B2> b2_ptr = rcp_dynamic_cast<B2>(b1_ptr); // Checke d, safe!
RCP<C> c_ptr = rcp_dynamic_cast<C>(b2_ptr); /I Checked, s afel

(e) Dynamic cast (runtime checked, failed cast not allowed)

RCP<A> a ptrl = rcp(new C);

RCP<A> a ptr2 = rcp(new A);
RCP<B1> bl_ptrl = rcp_dynamic_cast<B1>(a_ptrl,true); // Success!
RCP<B1> bl_ptr2 = rcp_dynamic_cast<B1>(a_ptr2,true); // Throw std::had_cast!
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5. Customized deallocators

(a) Creating a RCP object with a custom deallocator
RCP<C> c_ptr = rcp(new C[N],DeallocArrayDelete<C>(),tru e);
(b) Access customized deallocator (runtime checked, throws dailure)

const DeallocArrayDelete<C>
&dealloc = get dealloc<DeallocArrayDelete<C> >(c_ptr);

(c) Access optional customized deallocator

Ptr<const DeallocArrayDelete<C> >

dealloc = get optional_dealloc<DeallocArrayDelete<C> > (c_ptr);
if (lis_null(dealloc))

std::cout << "This deallocator exits!\n";

6. Managing extra data

(a) Adding extra data (post-destruction of extra data)
set_extra_data(rcp(new B1), "A:B1", inOutArg(a_ptr));
(b) Adding extra data (pre-destruction of extra data)
set_extra_data(rcp(new B1), "A:B1", inOutArg(a_ptr), PR E_DESTORY);
(c) Retrieving extra data
get_extra_data<RCP<B1> >(a_ptr,"A:B1")->f();
(d) Resetting extra data
get_extra_data<RCP<B1> >(a_ptr,"A:B1") = rcp(new C);
(e) Retrieving optional extra data

Ptr<const RCP<B1> > bl =
get_optional_extra_data<RCP<B1> >(a_ptr,"A:B1");
if (tis_null(b1))
(*b1)->f();

7. Embedded objects

(a) Creating an RCP object with embedded data

RCP<D> d_ptr(new D);
RCP<A> a_ptr rcpWithEmbeddedObj(new C, rcp(new D));

(b) Extract reference to const embedded object
const RCP<D> &d ptr = getEmbeddedObj<C,RCP<D> >(a_ptr);
(c) Extract reference to nonconst embedded object

RCP<D> &d ptr = getNonconstEmbeddedObj<C,RCP<D> >(a_ptr );
d ptr = null; // Sets the actual embedded RCP<D> object in a_p tr to null!
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C Commandments for the use oRCP

Here are listed commandments for the useR6R These commandments reinforce some of the
material in the quick-start in Appendix/B. Along with eachnmmandment is one or more anti-
commandments stating the negative of the commandment. Qaerfagments are also included to
demonstrate each commandment and anti-commandment.

Commandment 1 Thou shall put a pointer for an object allocated with operat@w into a RCP
object only once. The best way to insure this is to call omenaewdirectly in a call tor cp(. . .)
to create a dynamically allocated object that is to be manlalgg a RCP object. Better yet, de-
fine and use non-member constructor functions and neverawsealls tonew at the application
programming level See item (1b) in Appendix B.

Anti-Commandment 1 Thou shall never give a raw C++ pointer returned from operat@w to
more than ondrCP object.

Example:

A *ra_ptr = new C;
RCP<A> a_ptrl = rcp(ra_ptr); // Okay
RCP<A> a ptr2 = rcp(ra_ptr); // no, No, NO !ll!

Anti-Commandment 2 Thou shall never give a raw C++ pointer to an array of objectturned
from operatornew| ] to aRCP object using cp(new C[ n]).

Example:

RCP<std::vector<C> > c_array_ptrl = rcp(new std::vector< C>(N)); /I Okay
RCP<C> c_array ptr3 = rcp(new C[n]); // no, No, NO!

Commandment 2 Thou shall only create &lULL RCP object by using the default constructor or
by using thenul I enum (and its associated special constructor) (see itemiflAppendix B).
Trying to assign toNULL or O will not compile.

Anti-Commandment 3 Thou shall not create &ULL RCP object using the templated function
rcp(...) sinceitis very verbose and complicates maintenance.

Example:

RCP<A> a_ptrl
RCP<A> a ptr2

null; II Yes :-)
rcp<A>(NULL); // No, too verbose :-(
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Commandment 3 Thou shall only pass a raw pointer for an object that is alikdcated by operator
new(e.g. allocated on the stack) intdCP object by using the templated functioapFr onRef <T>( T&
t) described in Appendix B.

Anti-Commandment 4 Thou shall never pass a pointer for an object atébcated with operator
newinto a RCP object without settingwns_memto f al se.

Example:

C ¢
RCP<A> a ptrl
RCP<A> a ptr2

rcpFromRef(c); /I Yes :-)
rep(&c); /I no, No, NO !

Commandment 4 Thou shall only cast betwedRCP objects using the default copy constructor
(for implicit conversions) and the nonmember template tions r cp_i npl i ci t cast <>( -
...),rcpstatic_cast<>(...),rcpconst_cast<>(...) andrcp_dynam c_cast <>(-

... ) (seeitem[(4) in Appendix B).

Anti-Commandment 5 Thou shall never convert betweB&P objects using raw pointer access.

Example:
RCP<A> aptr = rcp(new C);
RCP<B1> bl ptrl = rcp_dynamic_cast<B1>(a_ptr); I Yes :-)
RCP<B1> bl ptr2 = rcp(dynamic_cast<B1*>(a_ptr.get())); /' no, No, NO !l
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D Recommendations for passing objects to and from C++ funabins

Below are recommended idioms for passing req@radd option@ arguments into and out of
C++ functions for various use cases and different types @aid. These idioms show how to write
function prototype argument declarations which explaét @+ language in a way that makes these
function prototypes as self documenting as possible, awmding errors, and increases readaﬁlity

of C++ code. In generaRCP<T>o0bjects should be passed and manipulated as though theg wher
raw C++ pointerT* objects. However, while raw C++ pointer objects should galhebe passed

by value,RCPobjects should generally be passed by reference to avoitkasary copy constructor
calls.

| Argument purpose | Non-Persisting | Persisting |

Ss
or

non-changeable object (requitdd const S s const RCP<const S> &s
or
const S &s

non-changeable object (optiofl| const Ptr<const S> &s const RCP<const S> &s

changeable object const Ptr<S> &s const RCP<S> &s

C++ declarations for passing small concrete objects (iith. value semantics) to and from functions
whereS is a place holder for an actual built-in or user-defined dgbe t

| Argument purpose | Non-Persisting | Persisting |
non-changeable object (requif@d const A &a const RCP<const A> &a
non-changeable object (optioRl| const Ptr<const A> &a const RCP<const A> &a
changeable object const Ptr<A> &a const RCP<A> &a

C++ declarations for passing abstract objects (i.e. witeremce or pointer semantics) or large
concrete objects (i.e. that are too expensive to copy) tdrandfunctions wherd\ is a place holder
for an actual (abstract) C++ base class.

IRequired arguments must be bound to valid objects (i.e. oaheNULL)
2Qptional arguments may BéJLLin some cases
SWhat makes code more “readable” is subjective of course.
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E Listing: Example C++ program using raw dynamic memory

#include "example_get_args.hpp"

II' Abstract interfaces
class UtilityBase {
public:
virtual “UtilityBase() {}
virtual void f() const = 0;
3
class UtilityBaseFactory {
public:
virtual “UtilityBaseFactory() {}
virtual UtilityBase* createUtility() const = 0;

3

/I Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this

3
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this

3

management

="<<this<<"\n"; }

="<<this<<"\n"; }

class UtilityAFactory : public UtilityBaseFactory {

public:

b

UtilityBase* createUtility() const { return new UtilityA(

class UtilityBFactory : public UtilityBaseFactory {

public:

b

/I Client classes
class ClientA {
public:

UtilityBase* createUtility() const { return new UtilityB(

void f(const UtilityBase &utility) const { utility.f(); }

3

class ClientB {
UtilityBase *utility_;

public:
ClientB() : utility_(0) {}
“ClientB() { delete utility ; }

void initialize( UtilityBase *utility ) { utility = utili

void g(const ClientA &a) { a.f(*utility ); }

class ClientC {
const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:

Y }
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3

ClientC(const UtilityBaseFactory *utilityFactory, bool
.utilityFactory _(utilityFactory),
utility_(utilityFactory->createUtility()),
shareUtility (shareUtility) {}
“ClientC() { delete utilityFactory ; delete utility ; }
void h(ClientB *b) {
if (shareUtility_) { b->initialize(utility_); }
else { b->initialize(utilityFactory_->createUtility()

}

/I Main program
int main( int argc, char* argv[] )

{

Il Read options from the commandline

bool useA, shareUtility;

example_get args(argc,argv,&useA, &shareUtility);
Il Create factory

UtilityBaseFactory *utilityFactory = 0;

if(luseA) utilityFactory = new UtilityAFactory();
else utilityFactory = new UtilityBFactory();
Il Create clients

ClientA a;

ClientB bl, b2;

ClientC c(utilityFactory,shareUtility);

Il Do some stuff

c.h(&bl);

c.h(&b2);

bl.g(a);

b2.9(a);

Il Cleanup memory

delete utilityFactory;
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F Listing: Refactored example C++ program usingRCP

#include "Teuchos_RCP.hpp"
#include "example_get_args.hpp"

II' Inject symbols for RCP so we don't need Teuchos:: qualific ation
using Teuchos::RCP;

using Teuchos::rcp;

using Teuchos::Ptr;

using Teuchos::outArg;

Il Abstract interfaces
class UtilityBase {
public:
virtual “UtilityBase() {}
virtual void f() const = 0;
3
class UtilityBaseFactory {
public:
virtual “UtilityBaseFactory() {}
virtual RCP<UtilityBase> createUtility() const = 0;

3

/I Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this ="<<this<<"\n"; }
3
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this ="<<this<<"\n"; }
3
class UtilityAFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityA()); }
3
class UtilityBFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityB()); }
3

/I Client classes
class ClientA {
public:
void f( const UtilityBase &utility ) const { utility.f(); }
3
class ClientB {
RCP<UtilityBase> utility_;
public:
void initialize(const RCP<UtilityBase> &utility) { utili ty_=utility; }
void g(const ClientA &a) { a.f(*utility ); }
3

class ClientC {
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RCP<const UtilityBaseFactory> utilityFactory_;
RCP<UtilityBase> utility_;
bool shareUtility_;
public:
ClientC( const RCP<const UtilityBaseFactory> &utilityFa
.utilityFactory _(utilityFactory),
utility_(utilityFactory->createUtility()),
shareUtility_(shareUtility) {}
void h( const Ptr<ClientB> &b ) {
if (shareUtility ) { b->initialize(utility ); }
else { b->initialize(utilityFactory_->createUtility()
}
3

/I Main program
int main( int argc, char* argv[] )
{
Il Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA, &shareUtility);
Il Create factory
RCP<UtilityBaseFactory> utilityFactory;
if(luseA) utilityFactory = rcp(new UtilityAFactory());
else utilityFactory = rcp(new UtilityBFactory());
Il Create clients
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory, shareUtility);
Il Do some stuff
c.h(outArg(b1));
c.h(outArg(b2));
bl.g(a);
b2.g(a);
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